ENERGY FACILITY SITE EVALUATION COUNCIL P.O. BOX 43172 OLYMPIA, WASHINGTON 98504-3172

IN THE MATTER OF:	NO. EFSEC/2001-01 Amendment 3
Satsop Combustion	ĺ
Turbine Project	FINAL APPROVAL OF THE PREVENTION OF
Electrical Generating Facility] SIGNIFICANT DETERIORATION AND
Elma, Washington	NOTICE OF CONSTRUCTION

Pursuant to the Energy Facility Site Evaluation Council (EFSEC) Permit Regulations for Air Pollution Sources, Chapter 463-78 Washington Administrative Code (WAC), regulation for air permit applications WAC 463-60-536, the Washington Department of Ecology (Ecology) regulations for new source review WAC 173-400-110 and Chapter 173-460 WAC; the federal Prevention of Significant Deterioration regulations, Code of Federal Regulations (CFR), Title 40 Subpart 52.21; and based upon the Notices of Construction Application (NOC), submitted by Duke Energy Grays Harbor, LLC., and Energy Northwest; the Administrative Order on Consent, Docket No. CAA-10-2001-0097, between the Satsop Combustion Turbine (Satsop CT) Project and the U.S. Environmental Protection Agency, Region 10, dated March 30, 2001; the request for second extension submitted by Grays Harbor Energy LLC, dated August 31, 2005; and the technical analysis performed by Ecology for EFSEC, EFSEC now finds the following:

FINDINGS

- 1. Duke Energy Grays Harbor, LLC., and Energy Northwest (jointly "Duke Energy") applied to construct the Satsop Combustion Turbine Project located near Elma, Washington. EFSEC previously approved the construction of this project (also known as Satsop Phase I), which is designed to produce a maximum of 650 megawatt (MW) of electrical power. This project received final approval on November 2, 2001 (NO, EFSEC/2001-01).
- 2. Amendment 1 was approved January 2, 2003. Amendment 1 modified the operating requirements and emission limitations in the original approval, added equipment as part of the project, and removed certain operational restrictions.
- 3. Amendment 2 was approved on October 19, 2004. Amendment 2 authorized a delay in continuous construction to not later than January 20, 2006, and modified the monitoring requirements and BACT emission limitations based on recently available information. Amendment 2 did not change or add any emission units that were either proposed for installation or already installed at the facility. In approving Amendment 2, EFSEC concluded that
 - 3.1 The request for the second amendment was timely and complete (April 10, 2004).
- 3.2 Best Available Control Technologies (BACT) for all anticipated pollutants had not changed from the original permit determination.
- 3.3 Interim source growth did not affect conclusions from the original permit analysis regarding air quality impact of this project.

- 4. On February 23, 2005, EFSEC approved transfer of ownership of the Satsop CT Project from Duke Energy and Energy Northwest to Grays Harbor Energy LLC.
- 5. On August 31, 2005, Grays Harbor Energy LLC requested a third amendment. Amendment 3 will authorize a second delay in continuous construction to not later than July 20, 2007, and makes several administrative corrections to errors in Amendment 2. After January 20, 2006, the sum of all delays in continuous construction may not exceed eighteen months.
- 6. The total project is proposed to consist of the following major components:
 - Two General Electric gas combustion turbines (GE 7FA); each turbine having a maximum rating of 1,671 million British thermal units per hour (mmBtu/hr), and each turbine will have a supplementary duct burner with a maximum rating of 505 mmBtu/hr.;
 - Two heat recovery steam generators (HRSG);
 - One steam turbine generator (STG) rated 300 MW;
 - One auxiliary boiler;
 - · One forced draft cooling tower system;
 - One emergency backup diesel generator; and
 - One diesel engine-driven fire water pump.

These components are configured in a "power island" comprised of 2 gas turbine/duct burner/HRSG units, one steam turbine, one cooling tower, one auxiliary boiler, one emergency generator, and one emergency fire water pump. Each gas turbine/duct burner/HRSG unit is known as a combined cycle gas turbine (CGT). Each CGT has its own exhaust stack.

- 7. The project is subject to permitting requirements under the federal requirements of 40 CFR 52.21 as a fossil fuel fired steam electric generator, one of 28 listed industries that becomes a "major source," when emitting more than 100 tons per year (tpy) of any regulated pollutant. The Satsop CT Project has the potential to emit PSD significant quantities of nitrogen oxides (NO_x), carbon monoxide (CO), sulfur dioxide (SO₂), sulfuric acid mist (H₂SO₄), particulate matter (PM), particulate matter less than 10 micrometers (PM₁₀), and volatile organic compounds (VOC).
- 8. The project is subject to permitting under the requirements of WAC 463-78-005(1) and 005(4) (adopting Chapters 173-400 and 173-460 WAC respectively) for ammonia (NH₃). NH₃ emissions are limited in this permit in its role as in controlling emissions of NO_x.
- 9. The combustion turbines, duct burners and auxiliary boilers will only use natural gas received from the Northwest Pipeline. The fuel for the diesel engines powering the emergency generators and emergency fire water pumps is to be on-road specification diesel fuel.
- 10. The site of the proposed project is within an area that is in attainment with regard to all pollutants regulated by the National Ambient Air Quality Standards (NAAQS) and state air quality standards. The site is approximately 60 kilometers from the nearest Class I Area, Olympic National Park.
- 11. The project is subject to new source review requirements under Chapter 463-78 WAC, which adopts by reference Chapter 173-400 WAC, Chapter 173-460 WAC, and 40 CFR 52.21. The

facility is also subject to emission limitation, monitoring and reporting requirements in 40 CFR 60 Subpart Db, 40 CFR 60 Subpart GG, Chapter 173-400 WAC, 40 CFR 60 Appendices A, B, and F, and 40 CFR 75; and to gas fuel monitoring requirements under 40 CFR 60.334(b)(2) and 40 CFR Part 75 Appendix D.

12. BACT as required under 40 CFR 52.21(j) and WAC 173-113(2), and toxic best available control technology (T-BACT) as required under WAC 173-460-040(4), will be used for the control of all air pollutants which will be emitted by the proposed project. The following table lists the plant wide, allowable emissions and BACT control technologies.

Prollingings (*)	Poenéel Poenéel		est Available C	onio II celuolo Al III	ygy/ in in the self in the sel
	io Eini.	Combinator	Aviox Harry :	Diese Fined	Cooling ::
	jpā/Ai. ((idA))	· · · · · · · · · · · · · · · · · · ·	boiler	leutedaeuch Seine	(OWE)
				ີ່ຂອງທູ່ເອງກາເອກເຊົ້າ ເຂົ້າກຳເລືອລາເດີນ	建新设计 化二氢异丙基二甲二氯二氢二氢异甲甲基甲甲基
Nitrogen	224,091	Selective	Flue gas	Comply	Not
oxides (NOx)	(246.5)	Catalytic	recirculation	with the	applicable
	()	Reduction	and low	internal	парриольно
		plus low	NOx burners	combustion	
		NOx burners	1 (On Cumois	engine	
Carbon	428,182	Good combust	ion practice	standards in	Not
monoxide	(477)	Cood compass	non praemee	40 CFR 89,	applicable
(CO)				Subpart B	аррисаотс
Sulfur dioxide	26,545	Natural gas fuel		Use only on-	Not
(SO_2)	$(29.2)^1$	3		road	applicable
Sulfuric acid	17,246	Natural gas fue	el .	specification	Not
mist (H ₂ SO ₄)	(19)			diesel oil	applicable
Volatile	67,818	Natural gas fue	el and Good	Comply	Not
organic	(74.6)	combustion pra	actice	with the	applicable
compounds		•		internal	•
(VOC)				combustion	
Particulate	184,545	Natural gas fuel and Good		engine	Drift
matter (PM)	(203)	combustion practice		standards in	eliminator
and Particulate		- ·	*		with less
matter ≤10	,		•	Subpart B	than 0.001%
micrometers				•	loss of the
(PM ₁₀)				· • •	recirculating
					water
Ammonia	128,214	5 ppm	-	Not applicable	
(NH ₃)	(141)	ammonia			. :
		slip		•	
		limitation		·	
	·				

¹ Based on an annual average natural gas total sulfur content of 0.5 grains/100 scf

- 13. Allowable emissions, from the new emissions units, will not cause or contribute to air pollution in violation of:
 - 13.1 Any state or national ambient air quality standard;
 - 13.2 Any applicable PSD increment

The following Table indicates the maximum Class I and Class II increment consumed by this project.

POBDUIL/		Maximum ambrent Glass II area impact concentration (itg/m)	allowable :: amorement	ીં જાણકાલો 👫 🔆	Class barea. Pallowable anorement ((11g/ms):
Particulate	24-				
(PM ₁₀)*	Hour	4.86	17	0.23	8
	Annual	0.91	30	0.01	4
Nitrogen d Annual	ioxide*	0.898	25	0.008	2.5
Sulfur	3-Hour	13.54	20	0.26	25
dioxide	24-Hour	3.5	91	0.032	5
	Annual	0.29	512	0.001	2

^{*}Evaluated at a higher emission rate than proposed to be permitted; see technical support document and application materials for details.

- 13.3 Ammonia is the significant toxic air pollutant emitted by this facility. The emissions of ammonia and all other toxic air pollutants from this facility will not exceed an acceptable source impact level established under WAC 173-460-150 and 160.
- 14. Ambient Impact Analysis indicates that there will be no significant impacts resulting from pollutant deposition on soils and vegetation in either of the closest Class I areas, Olympic and Mt. Rainier National Parks. The deposition of nitrogen within Olympic National Park for the 4 turbine proposal was modeled to be slightly above the level established by the National Park Service for concern. The National Park Service has informed EFSEC that the predicted deposition from the 4 turbine project was acceptable. The current 2 turbine project will have deposition levels significantly below the National Park Service's level of concern.
- 15. Ambient air quality analysis indicates that there will be no adverse impacts resulting from pollutant deposition in the Class II areas surrounding the project site.
- 16. Ambient Impact Analysis indicates that degradation of regional visibility or vistas from Olympic National Park due to the Satsop project is acceptable to the National Park Service based on an emission limitation of 2.0 ppm NOx, 24 hr average on the facility.
- 17. No significant effect on industrial, commercial, or residential growth in the Elma area is anticipated due to the project.

18. EFSEC concludes that

18.1 The request for the third amendment was timely and complete (September 30, 2005).

18.2 BACT:

- 18.2.1 Based on comparable permit actions since 2002, EFSEC concludes that BACT for VOC emissions from the auxiliary using good combustion practice is 0.0055 lb/MMBtu (one-hour average).
- 18.2.2 For all other anticipated pollutants from the gas combustion turbines, heat recovery steam generators, auxiliary boiler, and cooling tower system BACT is the same as determined in Amendment 2.
- 18.2.3 For the emergency backup diesel generator and diesel engine-driven fire water pump BACT constitutes the use of on-road diesel as defined in the Federal Code of Regulations at the time of purchase of the fuel oil.
- 18.3 Interim source growth did not affect conclusions from the original permit analysis regarding air quality impact of this project.
- 19. EFSEC finds that all requirements for new source review (NSR) and PSD are satisfied and that as approved below, the new emissions units comply with all applicable federal new source performance standards. Approval of the PSD and NOC application is continued, and the request for delay in continuous construction is granted subject to the following conditions:

APPROVAL CONDITIONS

- 1. This Amendment supersedes air quality PSD approval EFSEC 2001-01, Amendment 2 dated October 19, 2004.
- 2. The CGTs, HRSGs, and auxiliary boilers shall use only natural gas.
- 3. The diesel emergency generators shall:
 - 3.1 Use only on-road specification diesel oil with a sulfur content as defined at the time of purchase in the Code of Federal Regulations (at the time of issuance of this permit, that definition is in 40 CFR § 80.29(a)(i)).
 - 3.2 Not exceed 500 hours per engine per year of operating time.
- 4. The emergency fire water pump engine shall use only on-road specification diesel oil with a sulfur content as defined at the time of purchase in the Code of Federal Regulations (at the time of issuance of this permit, that definition is in 40 CFR § 80.29(a)(i)).
- 5. Each CGT exhaust stack shall not exceed the following:
 - 5.1 Nitrogen oxide (NO_X)emissions limitations:
 - 5.1.1 9.86 kilograms/hour (kg/hr) (21.7 pounds/hour (lb/hr)), 1-hour (1-hr.) average when duct firing,
 - 5.1.2 7.89 kg/hr (17.4 lb/hr), 24-hour moving average,

- 5.1.3 2.5 parts per million by volume, dry (ppm), 1-hr average, corrected to 15.0% oxygen (O₂),
- 5.1.4 2.0 ppm, 24-hour moving average, corrected to 15% O₂.
- 5.1.5 Initial compliance shall be determined in accordance with 40 CFR Subpart GG and EPA Reference Method 20, except that the instrument span shall be set between zero and 25 ppm, and
- 5.1.6 Routine compliance will be indicated by continuous emission monitors for NO_X and O₂. The continuous emission monitoring system (CEMS) must meet the requirements of Approval Condition 18.1.
- 5.2 Carbon monoxide (CO) emissions:
 - 5.2.1 3 ppm corrected to 15.0 percent oxygen, 3-hr. average,
 - 5.2.2 7.23 kg/hr (15.9 lb/hr) at 100% load, 3-hr. average,
 - 5.2.3 Initial compliance for each CGT shall be determined by EPA Reference Method 10 or an equivalent method agreed to in advance by EFSEC. The span and linearity calibration gas concentrations in Method 10 shall be appropriate to the CO concentration limits specified in this condition, and
 - 5.2.4 Routine compliance determinations will be determined through use of a continuous emission monitor meeting the requirements of Approval Condition 18.3.
- 5.3 Sulfur dioxide emissions:
 - 5.3.1 1.5 kg/hr (3.3 lb /hr), rolling annual-average calculated monthly,
 - 5.3.2 9.0 kg/hr (19.8 lb/hr), 1-hr. average,
 - 5.3.3 Initial compliance for each CGT shall be determined by EPA Reference Method 8, or an equivalent method approved in advance by EFSEC. Grays Harbor Energy LLC shall conduct source testing for sulfur dioxide once per calendar quarter for the first year of operation at each CGT exhaust stack,
 - 5.3.4 Routine compliance shall be determined through:
 - 5.3.4.1 Annual stack test on each CGT stack using the above Reference Method.
 - 5.3.4.2 The timing of the annual stack test will coincide with the annual RATA testing for the installed CEM systems,
 - 5.3.5 Routine compliance shall be indicated through:
 - 5.3.5.1 Monthly calculation of the SO₂ emissions based on
 - 5.3.5.1.1 The quantity of natural gas used by each turbine
 - 5.3.5.1.2 The total sulfur content of the natural gas consumed
 - 5.3.5.1.3 Subtracting the quantity of potential SO₂ converted to

- H₂SO₄. The conversion rate of potential SO₂ to H₂SO₄ is determined through the information provided by the Method 8 stack tests required in Approval Conditions 5.3.4.1 and 5.4.3.1.
- 5.3.5.1.4 Grays Harbor Energy LLC shall report to EFSEC on a monthly basis the quantity and average sulfur content of the natural gas burned by the CGT units at the facility. Total sulfur content of the natural gas shall be substantiated by purchase records and vendor's reports or total sulfur content monitoring performed by Grays Harbor Energy LLC on the gas used at this facility.
- 5.3.6 Fuel sulfur determination shall follow the more stringent of the procedures in 40 CFR 60.335(d) and (e) and 40 CFR Part 75, Appendix D.
- 5.4 Sulfuric acid mist emissions
 - 5.4.1 0.984 kg/hr (2.17 lb H₂SO₄/hr), rolling annual average calculated monthly,
 - 5.4.2 Initial compliance with the sulfuric acid emissions limits shall be determined by EPA Reference Method 8, or an equivalent method approved by EFSEC. Grays Harbor Energy LLC shall conduct source testing for sulfuric acid mist once per calendar quarter for the first year of operation at each exhaust stack.
 - 5.4.3 Routine compliance shall be indicated through:
 - 5.4.3.1 An annual emissions test on each CGT exhaust stack using the methods indicated above. After the initial 3 years of tests on each CGT stack have been completed, each CGT stack shall be tested once every 5 years unless the initial 3 years of testing indicates noncompliance with the limitations, then the testing frequency remains annual until 3 consecutive years of testing indicating compliance is achieved. If a once every 5 year test indicates noncompliance, the testing frequency reverts to yearly until 3 consecutive years of testing indicating compliance is achieved. The timing of these annual emissions tests shall coincide with the annual RATA testing, and
 - 5.4.3.2 Monthly calculation of the sulfuric acid mist emissions based on:
 - 5.4.3.2.1 The quantity of natural gas used by each turbine,
 - 5.4.3.2.2 The total sulfur content of the natural gas consumed,
 - 5.4.3.2.3 Subtracting the quantity of potential SO₂ converted to H₂SO₄. The conversion rate of potential SO₂ to H₂SO₄ determined through the Method 8 stack tests required in Approval Conditions 5.3.4.1 and 5.4.3.1 and updated annually.
 - 5.4.4 Fuel sulfur determination shall follow procedures outlined in Approval Condition 5.3.4.1.

- 5.5 Volatile organic compound (VOC) emissions:
 - 5.5.1 2.86 kg/hr (6.3 lb/hr), 1-hr average, reported as carbon equivalent,
 - 5.5.2 2.8 ppm, 1-hr average, reported as carbon equivalent,
 - 5.5.3 Initial compliance for each CGT shall be determined by EPA Reference Method 25A or 25B, South Coast Air Quality Management District Method 25.3, or an equivalent method agreed to in advance by EFSEC, and
 - 5.5.4 Routine compliance will be indicated through boiler operating records indicating:
 - 5.5.4.1 Hours of operation,
 - 5.5.4.2 Fuel flow,
 - 5.5.4.3 Application of an emission factor derived from stack testing of the installed boiler, and
 - 5.5.4.4 An annual stack test using one of the above referenced methods.

 After 3 consecutive years of stack testing indicating compliance, Grays

 Harbor Energy LLC may request and EFSEC may approve an alternative testing frequency. At no time shall stack testing be less frequent than once every 5 years.
- 5.6 Particulate Matter and Particulate Matter less than or equal to 10 micrometer (PM₁₀) emissions:
 - 5.6.1 246.0 kg/24 hours (542.4 lb/24 hours), filterable plus condensable PM,
 - 5.6.2 0.003 grains/dry standard cubic foot (gr/dscf), filterable plus condensable PM at 15% O₂,
 - 5.6.3 Initial compliance for each CGT exhaust stack shall be determined by use of EPA Reference Methods 5, 201, or 201A, plus Reference Method 202, or an equivalent method agreed to in advance by EFSEC. Use of EPA Reference Method 5 assumes all filterable particulate is PM₁₀. Use of EPA Reference Method 201 or 201A assumes that the mass of filterable PM is equal to the mass of filterable PM₁₀. If Method 201 or 201A is used, the mass of particulate retained in the cyclone shall be determined and reported.
 - 5.6.4 The results of the filterable and condensable particulate analyses shall be reported as total particulate, filterable particulate and condensable particulate.
 - 5.6.5 Routine compliance shall be the following:
 - 5.6.5.1 An annual emissions test on each CGT exhaust stack using the methods indicated above.
 - 5.6.5.2 After the initial 3 years of tests on each CGT stack have been completed, each CGT stack shall be tested once every 5 years unless the initial 3 years of testing indicates noncompliance with the limitations, then the testing frequency remains annual until 3 consecutive years of

- testing indicating compliance is achieved. If a once every 5 year test indicates noncompliance, the testing frequency reverts to yearly until 3 consecutive years of testing indicating compliance is achieved.
- 5.6.5.3 The timing of these annual emissions tests shall coincide with the annual RATA testing.
- 5.6.6 When PM₁₀ stack test data is not available, routine compliance shall be indicated by the use of natural gas for fuel and through operating records and the application of a source test derived emission factor.
- 5.7 Ammonia (free NH₃ and combined measured as NH₃) emissions:
 - 5.7.1 5.0 ppm, 24-hour average corrected to 15.0 percent O₂,
 - 5.7.2 7.3 kg/hr (16.1 lb/hr), 24-hour average,
 - 5.7.3 The emission limits in Conditions 5.7.1 and 5.7.2 are relieved during startup, shutdown and scheduled maintenance,
 - 5.7.4 Initial compliance for each CGT shall be determined by Bay Area Air Quality Management District Source Test Procedure ST-1B, "Ammonia, Integrated Sampling," EPA Conditional Test Method 027, or an equivalent method approved in advance by EFSEC,
 - 5.7.5 Routine compliance determinations will be determined through use of a CEMS which meets the requirements of Approval Condition 18.2 or Grays Harbor Energy LLC may propose alternative means for continuous assessment and reporting of NH₃ emissions for approval by EFSEC. Any proposed alternative NH₃ reporting shall be at a minimum equivalent to a CEMS meeting the requirements of Approval Condition 18.2, and
 - 5.7.6 The SCR catalyst system treating the exhaust from one CGT shall be repaired, replaced or have additional catalyst bed installed at the next scheduled outage, following a calendar month when ammonia slip can not be maintained at or below 4.5 ppm, 1 hour average corrected to 15.0 percent oxygen, based on the actual operating hours of the CGT. No month with less than 200 hours of actual operation (excluding start-up and shutdown hours) will be used for this evaluation. The outage to repair or replace or install additional catalyst to the SCR system shall be no later than 12 months after the month the ammonia slip exceeds the 4.5 ppm criteria given above.
- 5.8 Opacity at the CGT exhaust stack:
 - 5.8.1 Shall not exceed a six minute average opacity of 5 percent,
 - 5.8.2 Determined by use of EPA Reference Method 9 or an equivalent method approved in advanced by EFSEC,
 - 5.8.3 A certified opacity reader shall read and record the opacity of each operating unit once per day, and

- 5.8.4 Installation of a Continuous Opacity Monitoring system on each CGT can be substituted for use of EPA Reference Method 9 readings for the CGTs. If installed, the continuous opacity monitor must meet the requirements of Approval Condition 18.4.
- 6. The auxiliary boiler exhaust stack shall not exceed the following:
 - 6.1 NO_X emissions limitations:
 - 6.1.1 0.468 kg/hr (1.03 lb/hr), 1-hr. average,
 - 6.1.2 30 ppm at 3% O₂, 1-hr. average,
 - 6.1.3 Initial compliance shall be determined in accordance with 40 CFR Subpart GG and EPA Reference Method 20, except that the instrument span shall be set between zero and 75 ppm, and
 - 6.1.4 Routine compliance will be indicated through
 - 6.1.4.1 Boiler operating records indicating hours of operation and fuel flow and the application of an emission factor derived from stack testing of the installed boiler, and
 - 6.1.4.2 Periodic stack tests taken at 5 year intervals after the initial compliance test.
 - 6.2 CO emissions:
 - 6.2.1 50.0 ppm, 1- hour average corrected to 3.0% O₂, 3-hr. average,
 - 6.2.2 0.485 kg/hr (1.07 lb/hr) at 100% load, 3-hr. average,
 - 6.2.3 Initial compliance for the auxiliary boiler shall be determined by EPA Reference Method 10 or an equivalent method agreed to in advance by the EFSEC. The span and linearity calibration gas concentrations in Method 10 shall be appropriate to the CO concentration limits specified in this condition, and
 - 6.2.4 Routine compliance will be indicated through:
 - 6.2.4.1 Boiler operating records indicating
 - 6.2.4.1.1 Hours of operation and,
 - 6.2.4.1.2 Fuel flow,
 - 6.2.4.2 The application of an emission factor derived from stack testing of the installed boilers, and
 - 6.2.4.3 Periodic stack tests taken at 5 year intervals after the initial compliance test.
 - 6.3 SO₂ emissions:
 - 6.3.1 0.032 kg/yr (0.07 lb/hr) annual average, calculated monthly,
 - 6.3.2 1 ppm at 3% O₂, 3- hr. average,

- 6.3.3 Initial compliance for the auxiliary boiler shall be determined by EPA Reference Method 8, or an equivalent method approved in advance by EFSEC,
- 6.3.4 Routine compliance shall be determined by
 - 6.3.4.1 Fuel consumption records for the auxiliary boiler and
 - 6.3.4.2 Total sulfur content of the natural gas consumed in the boilers, and
- 6.3.5 Natural gas sulfur content shall be measured and reported through the methods defined in Approval Condition 5.3.4.1.

6.4 VOC emissions:

- 6.4.1 0.073 kg/hour (0.16 lb/hr), 1-hour average, reported as carbon equivalent,
- 6.4.2 Initial compliance for the auxiliary boiler shall be determined by EPA Reference Method 25A or 25B, or an equivalent method agreed to in advance by EFSEC, and
- 6.4.3 Routine compliance will be indicated through boiler operating records indicating
 - 6.4.3.1 Hours of operation
 - 6.4.3.2 Fuel flow, and
 - 6.4.3.3 Application of an emission factor derived from stack testing of the installed boilers
 - 6.4.3.4 Periodic stack tests, using one of the above referenced methods, taken at 5 year intervals after the initial compliance test.

6.5 PM₁₀ emissions:

- 6.5.1 3.175 kg/day (7.0 lb/day), annual average, filterable plus condensable PM₁₀,
- 6.5.2 0.005 gr/dscf, filterable plus condensable PM at 15% O₂,
- 6.5.3 Initial compliance for the auxiliary boiler exhaust stack shall be determined by either EPA Reference Methods 5, 201, or 201A, or an equivalent method agreed to in advance by EFSEC. Use of EPA Reference Method 5 assumes all particulate is in the form of PM₁₀, Use of EPA Reference Method 201 or 201A assumes that the mass of filterable PM is equal to the mass of filterable PM₁₀,
- 6.5.4 The results of the filterable and condensable particulate analyses shall be reported as total particulate, filterable particulate and condensable particulate, and
- 6.5.5 Routine compliance will be indicated through:
 - 6.5.5.1 Boiler operating records indicating
 - 6.5.5.1.1 Hours of operation,
 - 6.5.5.1.2 Fuel flow, and
 - 6.5.5.1.3 Application of an emission factor derived from stack testing of the installed boilers.

- 6.5.5.2 Periodic stack tests, using the above specified methods, taken at 5 year intervals after the initial compliance test.
- 6.6 Opacity at the auxiliary boiler exhaust stack:
 - 6.6.1 Shall not exceed a six minute average opacity of 5 percent,
 - 6.6.2 Determined by use of EPA Reference Method 9 or an equivalent method approved in advanced by EFSEC,
 - 6.6.3 A certified opacity reader shall read and record the opacity of the operating unit once per day, and
 - 6.6.4 Installation of a Continuous Opacity Monitoring system on the auxiliary boiler exhaust stack can be substituted for use of EPA Reference Method 9 readings. If installed, the continuous opacity monitor must meet the requirements of Approval Condition 18.4.
- 7. The diesel generator exhaust stack shall not exceed:
 - 7.1 Nitrogen oxides plus non-methane hydrocarbons emissions:
 - 7.1.1 3.2 kg/hr (7.04 lb/hr) or 6.4 grams per kilowatt-hour,
 - 7.1.2 Initial compliance shall be determined and certified by the engine manufacturer in accordance with the methods in 40 CFR Part 89 applicable to a new engine of its engine size for 2002, and
 - 7.1.3 Routine compliance will be indicated through diesel generator operating hour, maintenance, and fuel records and certification of the engine meeting the applicable new engine standards for engines sold in 2002.

7.2 CO emissions:

- 7.2.1 1.75 kg/hr (3.86 lb/hr) or 3.5 grams per kilowatt-hour,
- 7.2.2 Initial compliance shall be determined and certified by the engine manufacturer in accordance with the methods in 40 CFR Part 89 applicable to a new engine of its engine size for 2002, and
- 7.2.3 Routine compliance will be indicated through diesel generator operating hour records and certification of the engine meeting the applicable new engine standards for engines sold in 2002.

7.3 SO₂ emissions:

- 7.3.1 2.93 kg/day (6.56 lb/day), 1-day average,
- 7.3.2 Initial compliance shall be determined and certified by the engine manufacturer in accordance with the methods in 40 CFR Part 89 applicable to a new engine of its engine size for 2002, and
- 7.3.3 Routine compliance will be indicated by calculating the sulfur dioxide emissions based on

- 7.3.3.1 Generator fuel usage, and
- 7.3.3.2 Fuel sulfur content records.
- 7.4 PM₁₀ emissions:
 - 7.4.1 2.4 kg/day (5.28 lb/day) or 0.20 grams particulate per kilowatt-hour,
 - 7.4.2 Initial compliance shall be determined and certified by the engine manufacturer in accordance with the methods in 40 CFR Part 89 applicable to a new engine of its engine size for 2002, and
 - 7.4.3 Routine compliance will be indicated through diesel generator operating hour records and certification of the engine meeting the applicable new engine standards for engines sold in 2002.
- 7.5 Opacity at the diesel generator exhaust stack:
 - 7.5.1 Shall not exceed a six minute average opacity of 10 percent,
 - 7.5.2 Determined by use of EPA Reference Method 9 or an equivalent method approved in advance by EFSEC.
- 8. The emergency fire water pump engine:
 - 8.1 Shall meet the emission standard requirements in 40 CFR 89 applicable to a new engine of its engine size for 2002.
 - 8.2 Initial and routine compliance shall be demonstrated by demonstration/certification by the engine manufacturer that the engine meets the applicable emission standard in 40 CFR 89.
- 9. The cooling tower's emissions shall not exceed:
 - 9.1.1 11.11 kg PM₁₀/day (24.5 lb/day), annual average.
 - 9.1.2 4062 kg PM₁₀/yr (4.5 tpy), rolling total, calculated monthly,
 - 9.1.3 Initial compliance shall be determined by:
 - 9.1.3.1 A total solids mass balance across the cooling tower. The analysis shall incorporate factors involving the:
 - 9.1.3.1.1 Cooling tower recirculation rate,
 - 9.1.3.1.2 Cooling tower total dissolved solids (TDS),
 - 9.1.3.1.3 Fan operation effects, and
 - 9.1.3.1.4 Manufacturer's information on drift losses
 - 9.1.3.1.5 The methodology shall be submitted to and accepted by EFSEC prior to the first operation of any cooling tower.
 - 9.1.3.2 An affirmative report by the cooling tower drift eliminator manufacturer, based on an onsite inspection of the completed installation, that its product has been installed in accordance with its specifications accompanied by the results of a test or analysis of the cooling tower drift eliminator

material indicating that the material has a drift loss of less than 0.001% of the recirculating water flow rate. The required test could be performed on a full size mist eliminator module under laboratory conditions that match the worst case operations scenario of the actual cooling tower,

- 9.1.4 Routine compliance using the same calculation methodology used for the initial compliance test, once each quarter estimate the PM emissions from the cooling tower.
- 9.1.5 Prior to operation of the cooling tower, Grays Harbor Energy LLC shall submit to EFSEC, a report describing the manufactures recommendations for installing, operating and testing the drift eliminators.
- 10. Annual emissions shall not exceed the limits in the following table. The annual limits are 12 month rolling totals.

THE REPORT OF THE PARTY OF THE	jireh (CGI) Hgyyen (tonsyyn)	Aurdfing boffer. ² kg/year(toic/yr)		<u>ខ្មែញ មេលោ</u>
NO _x	110,625.5 (121.7)**	1,170 (1.3)		1,600 (1.76)*
CO	215,296 (237.0)**	1,216 (1.3)		877.3 (1.0)
SO ₂	13,140 (14.5)	79.5 (0.088)	·—	61.1 (0.1)
H ₂ SO ₄	8623 (9.5)			
PM/PM ₁₀	89,989.1 (99.0)**	331 (0.4)	4061 (4.5)	50 (0.1)
VOC	41,916.4 (37.5)**	182.5 (0.6)		Included in generator NO _x
NH ₃	64,107 (70.5)			

^{*} Limit for diesel generators is non-methane hydrocarbons plus NO_x. In this presentation the assumption is that all of the emissions are as NO_x.

11. Routine equipment startup and shut down

- 11.1 Each CGT is limited to 130 cold startup and shutdown events per calendar year. A cold startup event is when more than 48 hours has elapsed since the turbines were last fired or heat applied to the HRSG system.
- 11.2 Each CGT is limited to 2 warm startup and shutdown events per calendar day. This limitation does not apply during the period between initial firing of a combustion turbine for testing purposes and the start-up condition specified in Approval Condition 13.
- 11.3 A warm or cold startup period begins when fuel is first fired in the combustion turbine,

^{**} Includes the emissions from startup and shutdown events of the CGTs and diesel generators. CGT start up emissions are equally apportioned among the 2 turbines.

^{***} PM and PM₁₀, conservatively assumed to be equal.

- 11.4 The warm startup period ends when the earlier of these two operating events occurs:
 - 11.4.1 The proper operating temperature of the oxidation and SCR catalysts serving an operating CGT has been achieved and the combustion turbine achieves operational Mode 6, or
 - 11.4.2 A maximum of 3 hours has elapsed since fuel was first combusted in that CGT.
- 11.5 The cold startup period ends when the earlier of these two operating events occurs:
 - 11.5.1 The proper operating temperature of the oxidation and SCR catalysts serving one CGT has been achieved and the combustion turbine achieves operational Mode 6, or
 - 11.5.2 4 hours maximum for each turbine in a single power island has elapsed since fuel was first combusted in the first turbine.
- 11.6 The Shutdown period begins when the combustion turbine leaves operational Mode 6 and ends when fuel is no longer being introduced to any burner.
- 11.7 Operational Mode 6 is defined by the turbine manufacturer as the low emission mode during which all 6 of the burner nozzles are in use, burning a lean premixed gas for steady-state operation.
- 11.8 The proper operating temperature of the oxidation and SCR catalysts and the point at which all dry-low-NO_x burners for each combustion turbine are operational shall be determined from the manufacturer's design specifications and must be reported in writing to EFSEC before commercial operation of the combustion turbines,
- 11.9 Compliance with short-term emission limits (during startup and shutdown periods) shall be determined using manufacturer's emission factors or source test data using the EPA Reference Methods noted above. Where source test data and manufacturer's emission factors conflict, source test data shall be used to determine compliance,
- 11.10 Emissions resulting from these startup and shutdown events shall be included in the quarterly emissions reporting of Approval Condition 19.
- 11.11 The following emission factors may be used for calculating the emissions generated during cold startup of the CGTs in a single power island until emissions test data is developed by Grays Harbor Energy LLC, submitted to and approved by EFSEC that demonstrates a different value is appropriate:

Pollu(em)	(Cold) Signatup (Indignon Digito) ((parpsite (publicas in one poppar (gland))
Nitrogen oxides	1536 lb/startup
Carbon monoxide	5288 lb/startup
Volatile organic compounds	354 lb/startup

12. Within 180 days after formal, initial start-up of each combustion turbine, auxiliary boiler, and installation of the diesel generators, Grays Harbor Energy LLC shall conduct the initial performance tests for NOx, ammonia, SO₂, opacity, VOC, CO, PM₁₀ and H₂SO₄ noted above.

- The initial performance testing shall be performed by an independent testing firm. A test plan shall be submitted to EFSEC for approval at least 30 days prior to the testing. The initial compliance tests and all subsequent compliance tests shall be made at maximum load.
- 13. Initial start-up for determining when the initial compliance testing, CEM system performance testing, and other, non acid rain program purposes is the earlier of the following dates:
 - 13.1 The earliest date that electrical power is offered for sale (not test generation) from a CGT and its associated steam turbine, or
- 13.2 180 days after the first CGT in the power island has been synchronized to the electrical distribution grid.
- 14. Grays Harbor Energy LLC shall notify EFSEC in writing at least thirty days prior to:
 - 14.1 Initial start-up of any permitted emissions unit for operational testing and manufacturers certification purposes.
 - 14.2 Formal, initial start-up defined in Approval Condition 13.
 - 14.3 The date any emissions testing required by this permit will be performed when the time between tests is specified to be longer than 30 days.
 - 14.4 The date(s) CEMS performance testing or Relative Accuracy Test Audits will be performed.
- 15. Sampling ports and platforms shall be provided on each CGT stack, after the final pollution control device. The ports shall meet the requirements of 40 CFR, Part 60, Appendix A, Method 20. Sampling ports and platforms for the auxiliary boiler and diesel engine shall meet the requirements of 40 CFR Part 60, Appendix A, Method 1.
- 16. Adequate permanent and safe access to the test ports shall be provided. Other arrangements may be acceptable if approved by EFSEC prior to installation.
- 17. Operating Records for Emitting Equipment:
- 17.1 Unless otherwise specified above, operating records shall be information necessary to determine the operational status of the equipment.
- 17.2 Specific parameters and acceptable ranges of those parameters shall be specified in the Operation and Maintenance Manual.
 - 17.2.1 Example operating record information includes, but is not limited to:
 - 17.2.1.1 Fuel quality
 - 17.2.1.2 Fuel consumption during the period (hourly, monthly, etc.
 - 17.2.1.3 Unit operating parameters such as
 - 17.2.1.3.1 Exhaust temperature,
 - 17.2.1.3.2 Percent excess air,
 - 17.2.1.3.3 Output rate (pounds of steam/hour, kW output, etc),

- 17.2.1.3.4 Operating hours during the reporting period and cumulative for the year.
- 18. Continuous Emission Monitoring Systems (CEMS):
 - 18.1 CEMS for NOx and O₂ compliance shall meet the requirements contained in 40 CFR 75, Emissions Monitoring.
 - 18.2 CEMS for ammonia shall meet the requirements contained in 40 CFR, Part 63, Appendix A, Reference Method 301, Validation Protocol, and 40 CFR, Part 60, Appendix F, Quality Assurance Procedures, or other EFSEC- approved performance specifications and quality assurance procedures.
 - 18.3 CEMS for CO shall meet the requirements contained in 40 CFR, Part 60, Appendix B, Performance Specification 4 or 4A, and in 40 CFR, Part 60, Appendix F, Quality Assurance Procedures.
 - 18.4 Continuous Opacity Monitoring Systems shall meet the requirements contained in 40 CFR Part 60, Appendix B, Performance Specification 1 and in 40 CFR, Part 60, Appendix F, Quality Assurance Procedures.
- 19. CEMS and process data shall be submitted quarterly, in written form (or electronic if permitted by the EFSEC) monthly within thirty days of the end of each calendar quarter to EFSEC, its authorized representative (if any), and to the EPA Region X Office of Air Quality.
- 20. The format of the reporting described in Approval Condition 19 shall match that required by EPA for demonstrating compliance with the Title IV Acid Rain program reporting requirements. Pollutants not covered by that format shall be reported in a format approved by EFSEC that shall include at least the following:
 - 20.1 Process or control equipment operating parameters,
 - 20.2 The hourly maximum and average concentration, in the units of the standards, for each pollutant monitored,
 - 20.3 The duration and nature of any monitor down-time,
 - 20.4 Results of any monitor audits or accuracy checks,
 - 20.5 Results of any required stack tests, and
 - 20.6 Results of any other stack tests performed after the initial performance test.
 - 20.7 The above data shall be retained at the Satsop CT Project site for a period of at least five years
- 21. For each occurrence of monitored emissions in excess of the standard, the quarterly emissions report (per Approval Conditions 19 and 20) shall include the following:
 - 21.1 For parameters subject to monitoring and reporting under the Title IV, Acid Rain program, the reporting requirements in that program shall govern excess emissions report content.
 - 21.2 For all other pollutants:

- 21.2.1 The time of the occurrence,
- 21.2.2 Magnitude of the emission or process parameters excess,
- 21.2.3 The duration of the excess,
- 21.2.4 The probable cause,
- 21.2.5 Corrective actions taken or planned, and
- 21.2.6 Any other agency contacted
- 22. Grays Harbor Energy LLC shall have on site, and shall follow, an Operating and Maintenance manual, and an equipment Start-up, Shut-down, and Malfunction Procedures manual for all equipment that has the potential to affect emissions to the atmosphere. Copies of the manuals shall be available to EFSEC or the authorized representative of EFSEC at the facility. Emissions that result from a failure to follow the requirements of the manuals may be considered evidence that emission violations have occurred. The above manuals must be reviewed annually and updated as needed. EFSEC shall be notified whenever the manual is updated.
 - 22.1 The Operating and Maintenance manual should contain equipment specific operating parameter and maintenance information. Examples of the operational information to include are:
 - 22.1.1 Control equipment normal operating ranges such as:
 - 22.1.1.1 Normal operating temperature range.
 - 22.1.1.2 Normal pressure drop and acceptable range of pressure drops.
 - 22.1.1.3 Fan speed range.
 - 22.1.1.4 Reagent feed rate.
 - 22.1.1.5 Scrubber liquor pH range.
 - 22.1.1.6 Scrubber liquor feed rate and pressure.
 - 22.1.2 Boiler operating parameters such as:
 - 22.1.2.1 Fuel feed rate.
 - 22.1.2.2 Steam pressure.
 - 22.1.2.3 Combustion air flow rate.
 - 22.1.3 Combustion turbine operating parameters such as:
 - 22.1.3.1 Temperature ranges at inlet, combustors, turbine exhaust.
 - 22.1.3.2 Allowable vibration range.
 - 22.1.3.3 Inlet humidity.
 - 22.1.3.4 Operating speed (rpm) range.
 - 22.1.3.5 Turbine fuel feed rate.

- 22.1.4 Similar type operational measures for other emitting equipment, such as diesel generators and cooling towers.
- 22.2 The Start-up, Shut-down, and the Malfunction manual shall contain information on the proper procedures, and sequencing of actions for plant operations staff to follow in order to safely and efficiently start and stop the various equipment at the station under all reasonably ascertainable normal and abnormal start-up and shut-down situations.
- 23. Construction time:
 - 23.1 Amendment 3 allows for a suspension of construction on the approved facility.
 - 23.2 This permit becomes void if construction is not restarted by July 20, 2007 or if the sum of all delays in continuous construction after January 20, 2006 exceeds eighteen months.
- 24. Any activity which is undertaken by Grays Harbor Energy LLC, or others, in a manner which is inconsistent with the application and this determination, shall be subject to EFSEC enforcement under applicable regulations. Nothing in this determination shall be construed so as to relieve Grays Harbor Energy LLC of its obligations under any state, local, or federal laws or regulations.

(continued next page)

25. Access to the source by EFSEC, the authorized representative of EFSEC, or the U.S. Environmental Protection Agency (EPA), shall be permitted upon request for the purpose of compliance assurance inspections. Failure to allow access is grounds for action under the Federal Clean Air Act or the Washington Clean Air Act.

Prepared by:

Bernard Brady, P.E. Engineering and Technical

Air Quality Program

Washington Department of Ecology

3/17/06 Date

Approved by:

James O. Luce

Energy Facility Site Evaluation Council

3/14/06 Date

Approved by:

Richard Albright

Director

Office of Air Quality

U.S. Environmental Protection Agency

Region 10

Washington State

ENERGY FACILITY SITE EVALUATION COUNCIL

Satsop Combustion Turbine Project
Prevention of Significant Deterioration/Notice of Construction
Permit No. EFSEC/2001-01 Amendment 3

RESPONSIVENESS SUMMARY

March 14, 2006

1 Background

In August 2005, Grays Harbor Energy, LLC, submitted a request to the Energy Facility Site Evaluation Council (EFSEC or Council) to amend the Prevention of Significant Deterioration/Notice of Construction (PSD/NOC) permit for the Satsop Combustion Turbine Project, sited near Elma, in Grays Harbor County, Washington. The request sought an extension of the time period allowed to suspend construction by 18 months, and to make several administrative corrections to EFSEC Permit No. EFSEC/2001-01, Amendment 2.

A preliminary approval of PSD/NOC permit No. EFSEC/2001-01, Amendment 3, was issued for public comment on January 9, 2006. Public notice of the comment period and of a public hearing on this matter was performed by publication of a legal notice in the Aberdeen Daily World (1/9/2006) and the Vidette (1/12/2006), and by mailing to EFSEC's interested persons and minutes and agendas lists for this project. Copies of the draft permit and associated fact sheet were made available for public reference in the W. H. Abel Memorial Library in Montesano, the EFSEC offices in Olympia, and Ecology's Offices in Lacey, Washington, on EFSEC's web site and to any interested person upon request.

A public hearing was also held on February 14, 2006 at the EFSEC offices, Conference Room 308, in Olympia, Washington. The public comment period closed at the end of business on February 14, 2006.

The Council received one written comment. No oral comments were received at the February 14, 2006, hearing. The comments received are summarized below, and responses to comments are given. Other changes to the permit are also indicated. Copies of the original comment letters are available upon request from the Energy Facility Site Evaluation Council

2 Response to Comment from Grays Harbor County

Comment: Grays Harbor County has reviewed the draft document and concurs with the Council's determination that the amendment does not represent a probable significant adverse impact to elements of the natural environment.

Response: Thank you for your comment. No changes are required to the final Approval as a result of this comment.

3 Changes to Permit from Draft to Final Approval

In addition to punctuation corrections throughout the permit, the following findings and approval conditions were corrected without making any changes to substantive permit requirements:

Findings:

3.3 Interim source growth did not aeffect conclusions from the original permit analysis regarding air quality impact of this project.

13.2 Any applicable PSD increment

The following Table indicates the maximum Class I and Class II increment consumed by this project.

ROILLOIA	さい アンドライン アンドライン アンドラス	Lydky Foodbook and Select Lightly Chery III	経験ととのでは、「日本本」、 安略している。	Mkasjongung sundoksing Church Abara	
	新西亚洲的 近洋东京 人名 拉拉	ar his salung kich, skage sa	Linkos Consens	មេរិស្សិសស្រាក្រ មេរិស្សិសស្រាក្រ ទេសស្រាក្សាស្រាប់សំរាន់	Tinenence
		CANCOUNTY SEASON	\$ (([1438/1001])	((line/ion)); etc.	
Particulate	i i				_
(PM ₁₀)*	Hour	4.86	17	0.23	8
<u>.</u>	Annual	0.91	30	0.01	4
Nitrogen d	lioxide*	0.898	25	0.008	2.5
Annual					
Sulfur	3-Hour	13.54	20	0.26	25
dioxide	24-Hour	3.5	91	0.032	5
	Annual	0.29	512	0.001	2

^{*}Evaluated at a higher emission rate than proposed to be permitted; see fact sheet technical support document and application materials for details.

- For all other anticipated pollutants from the gas combustion turbines, heat recovery steam generators, auxiliary boiler, and cooling tower system BACT is the same as determined in Amendment 2.
- For the emergency backup diesel generator and diesel engine-driven fire water pump should <u>BACT</u> constitutes the use of on-road diesel as defined in the Federal Code of Regulations at the time of purchase of the fuel oil.

Approval Conditions:

- 7.5.2 Determined by use of EPA Reference Method 9 or an equivalent method approved in advanced by EFSEC.
 - 5.3.5.1.4 Grays Harbor Energy LLC shall report to EFSEC on a monthly basis the quantity and average sulfur content of the natural gas burned by the CGT units at the facility. Total sulfur content on of the natural gas shall be substantiated by purchase records and vendor's reports or total sulfur content monitoring performed by Grays Harbor Energy LLC on the gas used at this facility.

DEPARTMENT OF PUBLIC SERVICES

100 W. BROADWAY, SUITE 31 MONTESANO, WASHINGTON 98563-3614 PHONE (360) 249-4222 FAX (360) 249-3203

F. PAUL EASTER DIRECTOR

RAYS

STATE OF WASHINGTON

erie ibnerment enierierkeit Praefkila: Bereiten (Scheiner) - Erine bege. Eigengere (Erine) - Geber (Erine)

January 17, 2006

Allen J. Fiksdal **Energy Facility Site Evaluation Council** State of Washington P.O. Box 43172 Olympia, Washington 98504-3172

RE: Notice of Construction and Prevention of Significant Deterioration

Mr. Fiksdal:

Thank you for the opportunity to comment on the Washington State Energy Facility Site Evaluation Council's draft Notice of Construction and Prevention of Significant Deterioration (NOC/PSD) associated with the Grays Harbor Limited Liability Corporation's management of the Satsop Combustion Turbine Project located at 401 Keys Road in unincorporated Grays Harbor County, Washington.

Grays Harbor County has reviewed the draft document and concurs with the Council's determination that the proposal does not represent a probable significant adverse impact to elements of the natural environment.

Please contact us at (360) 249-5579 should you have any questions concerning this comment.

Thank you again.

Sincerely,

Brian Shea

Director Planning and Building Division RECEIVED

ENERGY FACILITY SITE EVALUATION COUNCIL

Cc: Bob Beerbower, Grays Harbor County District 1 Commissioner Paul Easter, Grays Harbor County Public Services Department Director Mike Ferry, Grays Harbor County Building Inspector file

Satsop CT PSD Permit No. EFSEC/2001-01 Amendment 3 – Final Approval April 3, 2006 Page 2 of 2

Copies available for public reference:

In electronic format on the internet:

W.H. Abel Memorial Library 125 Main Street South Montesano, WA 98563-3794 The EFSEC web site at www.efsec.wa.gov

Copies available for public reference and copying:

Washington Energy Facility Site Evaluation Council 925 Plum Street SE, Building 4 P.O. Box 43172 Olympia, WA 98504-3172 8:00 a.m. to 5:00 p.m. weekdays Phone (360) 956-2121 Washington State Department of Ecology 300 Desmond Drive Lacey, Washington. 8:00 a.m. to 4:30 p.m. weekdays Please contact Bernard Brady at (360) 407-6803

For federal PSD purposes, and in accordance with section 40 Code of Federal Regulations (CFR) 124.15 and 124.19, this permit will become effective within 30 days after the date of this letter. Within 30 calendar days of this notice, any person who commented on the draft approval may petition the EPA Administrator, under 40 CFR 124.19, to review any condition of the decision. Any person who failed to file comments or failed to participate in the public hearing on the draft may petition for administrative review only to the extent of the changes from the draft to the final approved decision. If an appeal is made to the EPA Administrator, the effective date of the permit will be suspended until such time as the appeal is resolved.

Please do not hesitate to contact me at 360-956-2047 should you have any questions about this matter.

Sincerely,

Irina Makarow Siting Manager

c.c.: Dan Meyer, U.S. EPA Region 10*
Madonna Nervaez, U.S. EPA Region 10
Nancy Helm, U.S. EPA Region 10
Dr. Rienerd Sodhi, Chehalis Confederated Tribes
Mark White, Chehalis Confederated Tribes
Lisa Riener, Quinault Indian Nation
Janice Peterson, USDA – Forest Service*
Darwin Morse, National Park Service*
Elizabeth Waddell, National Park Service*
Barbara Samora, Mount Rainier National Park

Richard Stedman, Olympic Regional Clean Air Agency*
Mike Wilson, Grays Harbor County Commission
Al Carter, Grays Harbor County Commission
Bob Beerbower, Grays Harbor County Commission
Bernard Brady, Department of Ecology*
Tom Donovan, Grays Harbor Energy LLC
F. Paul Easter, Grays Harbor County, Public Services*
Ken Berg, U.S. Fish and Wildlife Service
Tom Sibley, NOAA Fisheries Service
Steve Landino, National Marine Fisheries Service

^{*} Copy of Final Approval and Responsiveness Summary Enclosed.

Received

APR 0 5 2006

Office Of Air, Waste And Toxics

STATE OF WASHINGTON

ENERGY FACILITY SITE EVALUATION COUNCIL

PO Box 43172 • Olympia, Washington 98504-3172File

File
Enf/comp
NSPS/Subpt
MACT Subpt
Other

April 3, 2006

Subject: Satsop Combustion Turbine Project - Final Approval Notice of Construction/Prevention of Significant Deterioration Permit No. EFSEC/2001-01 Amendment 3

Dear Interested Person;

You are receiving this letter for one of the following reasons:

- 1) you presented comments to the Energy Facility Site Evaluation Council (EFSEC or Council) regarding the preliminary approval to amend the Satsop Combustion Turbine Project (Satsop CT) air emissions permit;
- 2) you are an interested tribal, local, state or federal agency representative with respect to this permit action;
- 3) you are on EFSEC's mailing list for the Satsop CT Project.

This letter is to notify you that on March 14, 2006, the Council approved Amendment 3 to the Satsop CT Notice of Construction/Prevention of Significant Deterioration (NOC/PSD) Permit No. EFSEC/2001-01. The final NOC/PSD permit was subsequently signed by the authorized representative of the U.S. Environmental Protection Agency Region 10.

The Council's final determination regarding this permit amendment consists of

- the final NOC/PSD Permit;
- comments received regarding the draft permit issued for public comment;
- a responsiveness summary which summarizes the comments received, responds to the comments, and indicates what approval conditions have changed from the preliminary determination.

A copy of these documents is available upon request made to the EFSEC office by calling (360) 956-2121, by e-mail to efsec@ep.cted.wa.gov, or by mail to efsec@ep.cted.wa.gov, or by mailto:efsec@ep.cted.wa.gov and the following locations: